If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2=81
We move all terms to the left:
121x^2-(81)=0
a = 121; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·121·(-81)
Δ = 39204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{39204}=198$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-198}{2*121}=\frac{-198}{242} =-9/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+198}{2*121}=\frac{198}{242} =9/11 $
| 0.3w+6=3.9 | | .5(x+2.75)=3 | | 38-5x=-2(x-7) | | (6x-12)+5x=120 | | 8(g-1)=10g | | 4x+27=6x-4 | | 5(x-3)-5=45 | | w-4.38=8.13 | | -2(-7-m4)=106 | | 2r-3=3+4r | | -6=x/4+-5 | | -3(-0.2x+4)=6(-1-0.9x) | | 2(10x+1)=42 | | 122=(4x-8) | | 6w+3.9=0.3 | | 45-2=2x+8 | | 2(y-7)-2=2 | | -5x+15=15x+45 | | 3x=2x-85 | | 4+3t+8=18 | | (x-15)(x-25)1/2x1/2x100=540 | | 6x+0.3=3.9 | | 5+4x=19+2x | | -1/2(n+2)+3n=-1 | | 5x+28=6x−1 | | 168x-27=85 | | –7m–4m=m | | 15(x-1/5)=12 | | 3x+28=45 | | 7x−8(x+3)=1 | | 1/2x(x-15)1/2x(x-25)100=540 | | 2(r-16=-12 |